

Welcome to λ-blocks’ documentation!

λ-blocks is a framework that allows developers to write data
processing programs without writing code. For that purpose, it uses a
graph representation of a program (often in the form of an ETL)
written in YAML, which links together blocks of Python code.

In this scenario, the code blocks are the vertices of the computation
graph, while the links between them represent how computed data
“flows” from one block to the other.

This provides many benefits, among them are ease of writing (in
the simple YAML description format), code deduplication (by
reusing code blocks in different computation graphs, or by embedding
sub-graphs into bigger ones), and the ability to reason about a
graph, to optimize or debug it for example (through the use of
plugins). While λ-blocks comes with some batteries included (a
collection of blocks and plugins), it is easy (and encouraged) to add
your own, in order to fit the purposes of your organization of the
range of problems you’re solving.

We encourage you to read the tutorial, to learn how to write and
execute your programs with λ-blocks, before diving in the available
block collections and plugins.

	Tutorial
	Installation

	Writing a computation graph

	Using plugins

	Information for developers
	Dependencies

	Tests

	Development mode

	Examples
	Simple unix-like pipes

	Over http

	Twitter Wordcount with sub-graph

	Wordcount with Spark and a sub-graph

	Available blocks
	http

	matplotlib

	misc

	spark

	twitter

	unixlike

	Available plugins
	cache_disk

	debug

	instrumentation

	Internal API
	lb.cache

	lb.graph

	lb.exceptions

	lb.log

	lb.plugins_manager

	lb.registry

	lb.signature

	lb.types

	lb.utils

Indices and tables

	Index

	Module Index

	Search Page

Tutorial

In this tutorial, we go through the steps of installing λ-blocks,
writing a computation graph, and proceed to execute it.

Installation

Dependencies

If you’re using Debian, Ubuntu, or a system of this family, the
required dependencies should all be available in your package manager:

apt install python3 python3-yaml

Also not required for this tutorial, these dependencies are needed for
some blocks in the included library:

apt install python3-matplotlib python3-requests-oauthlib

If you’re not using Debian or a Debian-based system, be sure to
install Python 3, and PyYAML through pip.

Finally, if you want to use the Spark blocks, you will need Spark and
Pyspark to be installed on your system (but this is not required for
this tutorial).

λ-blocks

While λ-blocks is still in its early days of development, it is not
available through pip, nor in any distribution package
manager. Therefore, you can install it this way:

git clone https://github.com/lambdablocks/lambdablocks.git
cd lambdablocks
python3 setup.py install

Verification

Try executing:

blocks.py --help

If you get the help page of this executable, all is set!

Writing a computation graph

Now that everything is installed, let’s dive into writing a first
λ-blocks program.

Such a program, also called a computation graph, is written in YAML [http://yaml.org/], a simple data representation format. Create a
new file and name it wordcount.yml: it will contain the description
of a computation graph to perform a Wordcount. Add this content:

name: wordcount
description: Counts words

- block: cat
 name: cat
 args:
 filename: examples/wordlist

This YAML file contains two parts: the first one is a key/value list
giving information on the computation graph (such as its name and
description). The second part is more interesting: it contains the
list of the code blocks that are the vertices of our graph. For now,
there is only one vertice: it uses the block cat from the
lb.blocks.unixlike blocks library. It has a unique name cat (since
we use only once the block cat in this program, the vertice name can
be the same as the block name), and one argument, a path to a file. As
you may have guessed, this block acts like the Unix cat utility: it
reads a file.

This program won’t do much, except for reading a file. You can try to
execute it this way:

blocks.py -f wordcount.yml

If nothing happens, it is normal: the file has been read by λ-blocks,
but it isn’t supposed to be displayed on the console. If you get an
error, the path you provided may be incorrect: be sure to execute the
command within in the lambdablocks folder, or to change the
filename argument.

Let’s add a few vertices in our graph, and link them together to
compute a Wordcount implementation:

name: wordcount
description: counts words

- block: cat
 name: cat
 args:
 filename: examples/wordlist

- block: group_by_count
 name: group
 inputs:
 data: cat.result

- block: sort
 name: sort
 args:
 key: "lambda x: x[1]"
 reverse: true
 inputs:
 data: group.result

- block: show_console
 name: show
 inputs:
 data: sort.result

We now have 4 blocks (or vertices):

	cat reads a file and outputs a list of lines found in this file;

	group_by_count reads a list, and outputs a list of unique items,
along with the number of times they appear in the list;

	sort reads a list, and outputs a sorted list, sorted by the second
item of each element;

	show_console displays its inputs on the user console.

A block has named inputs and named outputs. To link two blocks
together, we specify the inputs of a block in the inputs key. For
example, the block group_by_count takes one input, data, that is
the output result of the block cat.

Let’s try to execute this graph:

blocks.py -f wordcount.yml

That’s it! You should get a list of fruits, along with their number of
occurences.

Using plugins

λ-blocks, while processing a computation graph, can execute plugins,
which are pieces of Python code able to act on the graph. For example,
let’s try the included debug plugin:

blocks.py -f wordcount.yml -p debug

This plugin will display an excerpt of the results produced by each
block, which allows you to effectively see what every block is
doing. This is useful to follow the data as it is transformed from the
entry of the graph to all the following vertices.

You can also try to execute the instrumentation plugin the same way,
which will measure the time taken by every block to compute, useful to
detect bottlenecks:

blocks.py -f wordcount.yml -p debug instrumentation

Unsurprisingly, the cat block should be the slowest, because it
requires to read a file on disk.

Information for developers

Dependencies

Install the development dependencies:

apt install python3-nose2 python3-nose2-cov python3-sphinx

Tests

To run the tests:

PYTHONPATH=. make test

Development mode

To install the package in development mode, you can use:

pip3 install -e .

Examples

Simple unix-like pipes

The file examples/unix.yml parses the file /etc/passwd on your
system (if it exists), greps it for root, cuts some fields, keeps
only the last line, and finally displays the result:

blocks.py -f examples/unix.yml

Over http

The graph located in examples/http.yml does fetches a file over
http, filters it, and saves the result in a file:

blocks.py -f examples/http.yml

Twitter Wordcount with sub-graph

The graph in examples/twitter_wordcount.yml will count the most used
hashtags on the AFP timeline. For that purpose, it uses a sub-graph,
located in examples/topology-wordcount.yml, which does the counting
words part.

To make it work, you first need to fill in your Twitter API
credentials, and then:

blocks.py -f examples/twitter_wordcount.yml

Wordcount with Spark and a sub-graph

The graph in examples/spark_wordcount.yml does a Wordcount over a
file, using a sub-graph for counting words. It will display the result
both in the console and in a matplotlib plot.. You need to install
Matplotlib, Spark and Pyspark, and then:

PYSPARK_PYTHON=python3 blocks.py -f examples/spark_wordcount.yml

Available blocks

http

matplotlib

misc

spark

twitter

unixlike

Available plugins

cache_disk

debug

instrumentation

Internal API

lb.cache

lb.graph

lb.exceptions

lb.log

lb.plugins_manager

lb.registry

lb.signature

lb.types

lb.utils

Index

 _static/comment.png

nav.xhtml

 Table of Contents

 		Welcome to λ-blocks' documentation!

 		Tutorial

 		Installation

 		Dependencies

 		λ-blocks

 		Verification

 		Writing a computation graph

 		Using plugins

 		Information for developers

 		Dependencies

 		Tests

 		Development mode

 		Examples

 		Simple unix-like pipes

 		Over http

 		Twitter Wordcount with sub-graph

 		Wordcount with Spark and a sub-graph

 		Available blocks

 		http

 		matplotlib

 		misc

 		spark

 		twitter

 		unixlike

 		Available plugins

 		cache_disk

 		debug

 		instrumentation

 		Internal API

 		lb.cache

 		lb.graph

 		lb.exceptions

 		lb.log

 		lb.plugins_manager

 		lb.registry

 		lb.signature

 		lb.types

 		lb.utils

_static/down-pressed.png

_static/up.png

_static/down.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/comment-close.png

